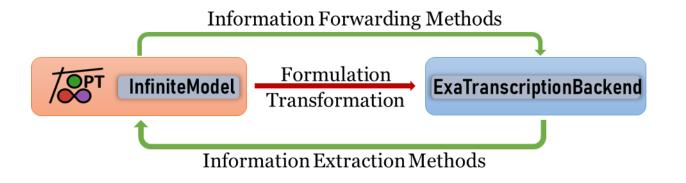


# INFINITEEXAMODELS.JL: Accelerating infinite-dimensional Optimization problems on CPU & GPU

7/29/2024

Joshua Pulsipher and Sungho Shin





### ACKNOWLEDGEMENTS



Sungho Shin MIT Assistant Professor



François Pacaud Mines Paris Assistant Professor



Mihai Anitescu Argonne Senior Computational Mathematician



Department of Chemical Engineering





EXASCALE COMPUTING PROJECT



FACULTY OF

ENGINEERING

### OUTLINE

InfiniteOpt

ExaModels

InfiniteExaModels

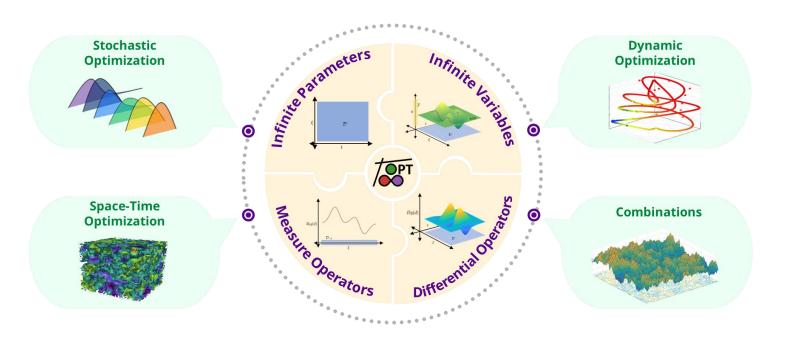


# OUTLINE

InfiniteOpt

ExaModels

InfiniteExaModels

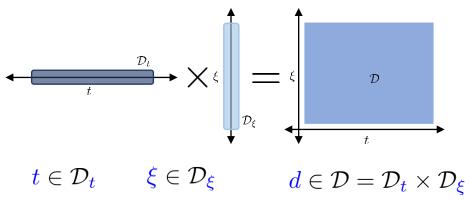




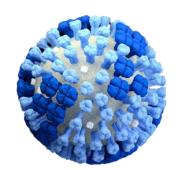
# **INFINITE-DIMENSIONAL OPTIMIZATION**

#### **Infinite Parameters**

#### Index over continuous domains

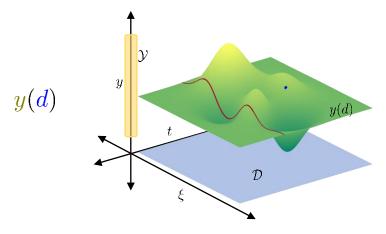


- Example: Disease Control
  - Population dynamics
    - $\mathbf{t} \in [0, t_f]$
  - Uncertain infection rates
    - $\boldsymbol{\xi} \in (-\infty,\infty) \sim \mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$



#### **Infinite Variables**

• **Decisions** indexed by infinite parameters



- Example: Disease Control
  - Population of infected at a particular time and infection rate  $y_i(t,\xi)$



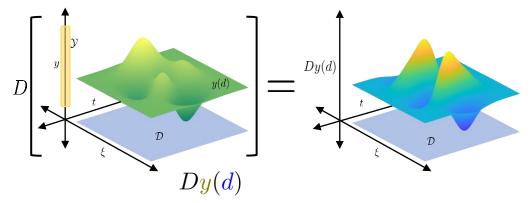
FACULTY OF

ENGINEERING

# **INFINITE-DIMENSIONAL OPTIMIZATION**

#### **Differential Operators**

#### • Capture of **rate of change** in variables



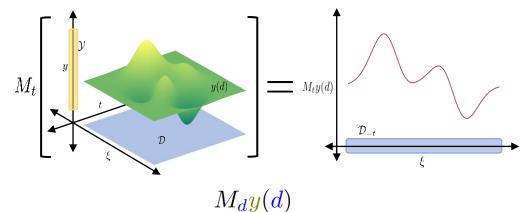
- Example: Disease Control
  - Time derivative
  - SEIR model

$$rac{\partial oldsymbol{y_i}(t,oldsymbol{\xi})}{\partial t}$$

$$\frac{\partial y_i(t,\xi)}{\partial t} = \xi y_e(t) - \gamma y_i(t)$$

#### **Measure Operators**

• Summarize variables over continuous domains

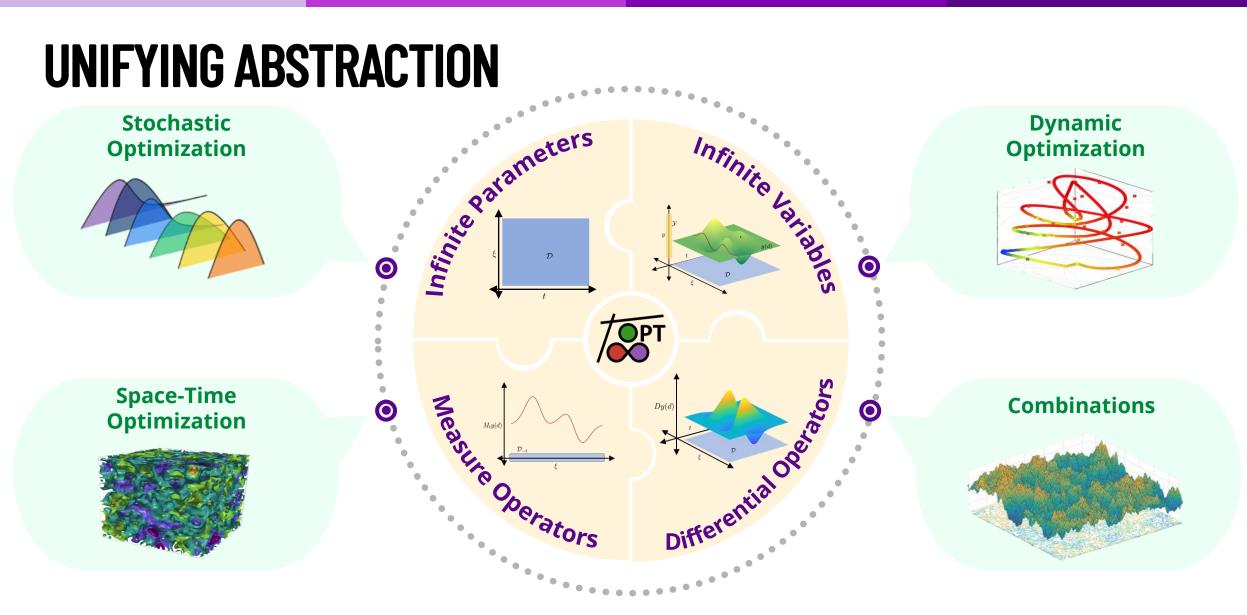


- Example: Disease Control
  - Summarize overall infections

 $\int_{t\in\mathcal{D}_t} \mathbb{E}_{\xi}[\underline{y_i}(t,\xi)]dt$ 

 $\mathbb{E}_{\xi}\left[\int_{t\in\mathcal{D}_{t}}y_{i}(t,\xi)dt\right]$ 

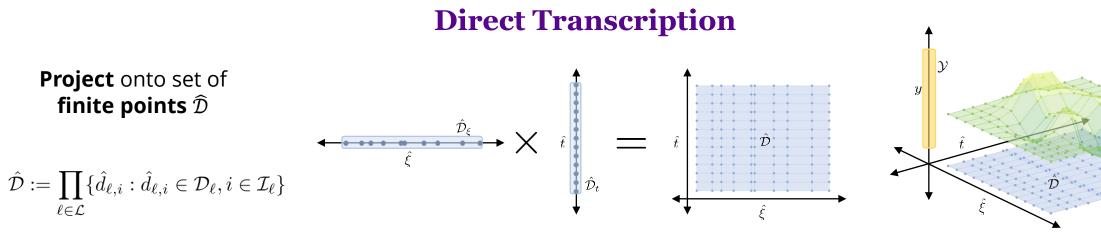




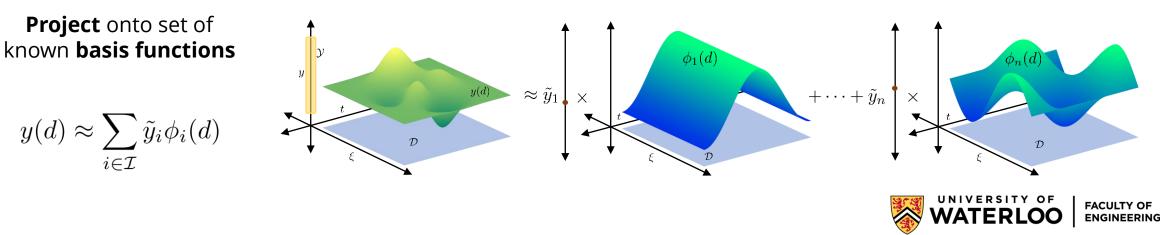


FACULTY OF

### **TRANSFORMING INFINITEOPT PROBLEMS INTO FINITE ONES**



**Method of Weighted Residuals** 



J. L. Pulsipher, W. Zhang, T. J. Hongisto, and V. M. Zavala. "A Unifying Modeling Abstraction for Infinite-Dimensional Optimization." Computers & Chem. Eng. 2022



- Implements unifying abstraction
  - Models a wide range of problems
  - Leverages structure to accelerate solutions
- Implemented in **julia** 
  - Enables intuitive symbolic expressions
  - Highly performant

#### Extensive resources

 Documentation, tutorials, examples, forum, short courses, videos





Try it @ <u>https://github.com/infiniteopt/InfiniteOpt.jl</u>



#### **Intuitive Modeling API**

$$\frac{\partial y_b(t,\xi)}{\partial t} = 2y_b(t,\xi)^2 + y_a(t) - z_1$$
$$\mathbb{E}_{\xi} \left[ y_c(t,\xi) \right] \ge \alpha$$
$$y_a(0) + z_2 = \beta$$

#### Impact

#### Announcements Welcome to InfiniteOpt.jl Discussions!

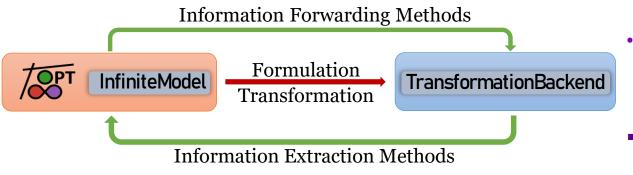
- 1000s of downloads
- Use cases in diverse disciplines
  - e.g., evolutionary biology, rocketry, economics, autonomous vehicles



# TRANSFORMING INFINITEOPT MODELS



#### **Transformation Paradigm**

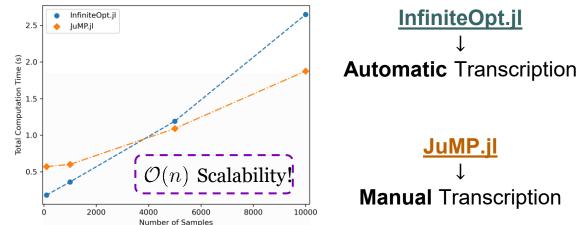


#### **Transformation API**

- Highly extensible to make advanced solution techniques accessible/automated
- Detailed templates, tutorials, and docs



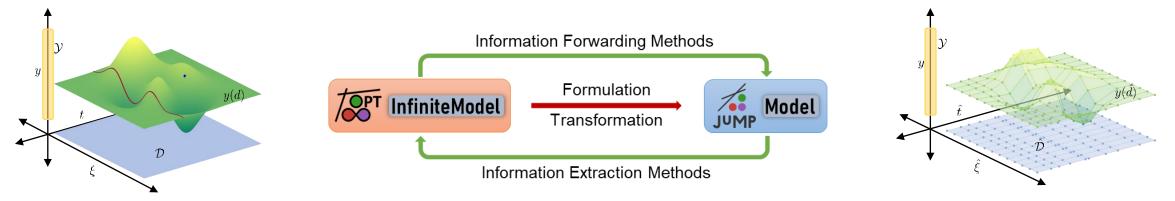
- Many derivative/measure approximations
  - Orthogonal collocation, Gauss quadrature, etc.
- Performant





# SOLVING INFINITEOPT PROBLEMS VIA TRANSCRIPTIONOPT

- Apply **transformation** to obtain finite JuMP model that can be solved
- InfiniteOpt has a large suite of **discretization** techniques
- Discretized InfiniteOpt problems have repeated structure
- Traditional modeling languages like JuMP do not leverage repeated structure



How can we leverage the repeated structure to **accelerate solution performance**?



 $\sin^2(\underline{y}(t)) \le 42, \ t \in \mathcal{D}_t$ 

 $\sin^2(y_k) \le 42, \ k \in \mathcal{K}$ 



InfiniteOpt

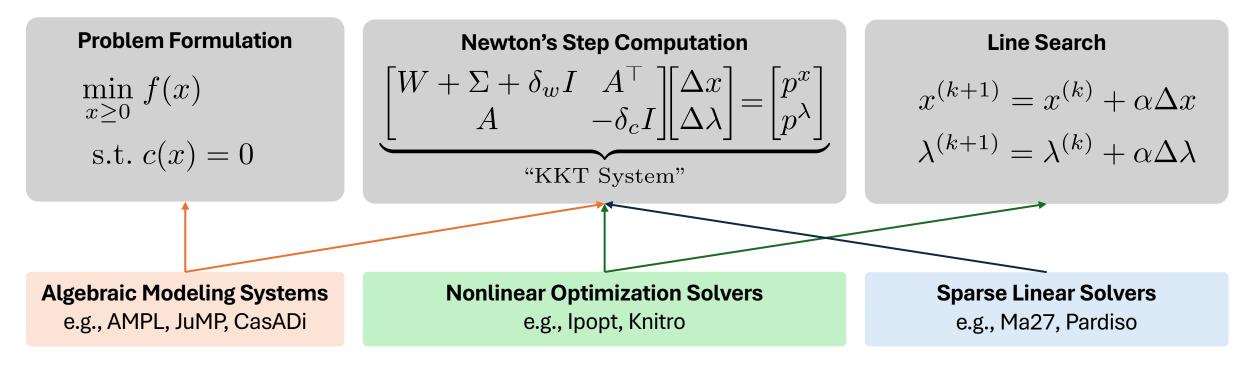
ExaModels



InfiniteExaModels



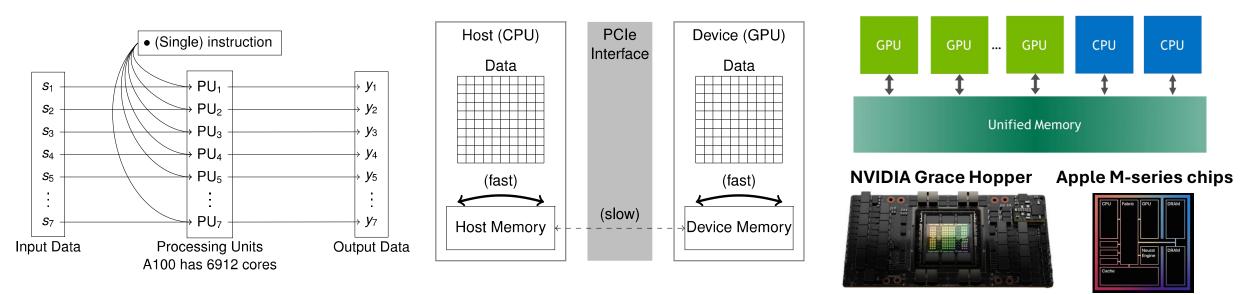
### **Traditional Nonlinear Optimization: Software**



- Algebraic modeling systems provide front-end and sparse derivative evaluation capabilities
- Nonlinear optimization solvers apply optimization algorithms
- Sparse linear solvers resolve KKT systems using sparse matrix factorization
- Many of these tools are developed in the 1980s-2000s (not compatible with GPUs).

### How Does GPU Work?

- Single Instruction, Multiple Data (SIMD) parallelism
- Dedicated device memory and slow interface: all data should reside in device memory only
- Emerging architectures employ unified memory.

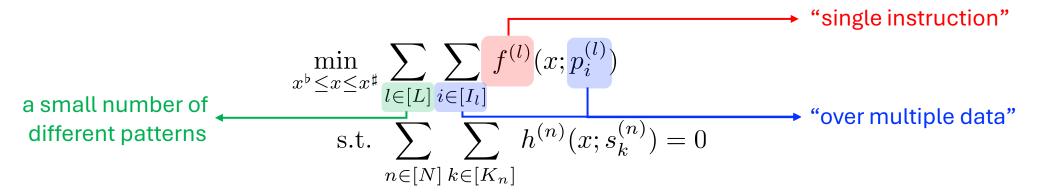


Adapting CPU code to GPU code is not merely a matter of software engineering; it often requires the **redesign of the algorithm** 

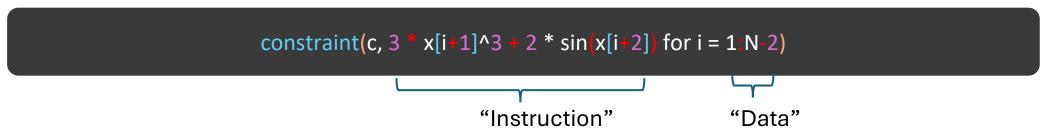
### **SIMD Abstraction for NLPs**



- Large-scale optimization problems almost always have repeated patterns
- **SIMD Abstraction** can capture such repeated patterns:



• Repeated patterns are inputted as **iterators** (data can be stored in structured format)



• For each pattern, the AD kernel is compiled and executed over multiple data in parallel

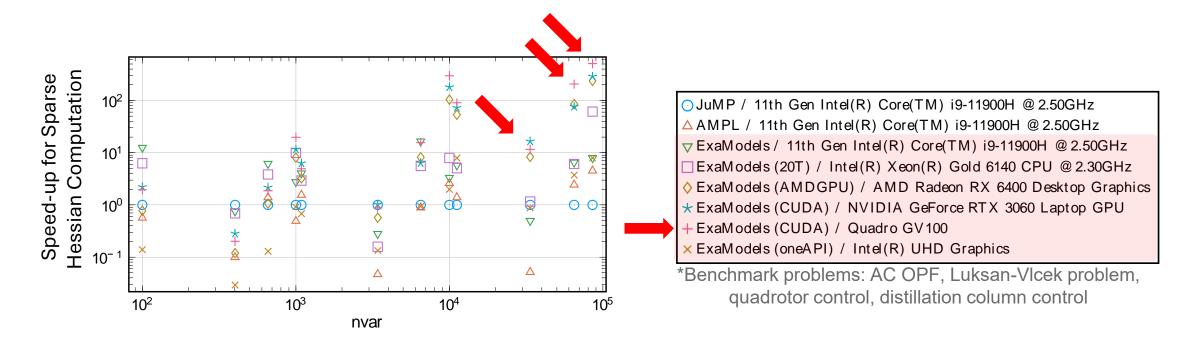
Shin, Pacaud, and Anitescu

Accelerating optimal power flow with GPUs: SIMD abstraction of nonlinear programs and condensed-space interior-point methods.

PSCC 2024

### **Sparse AD Benchmark**

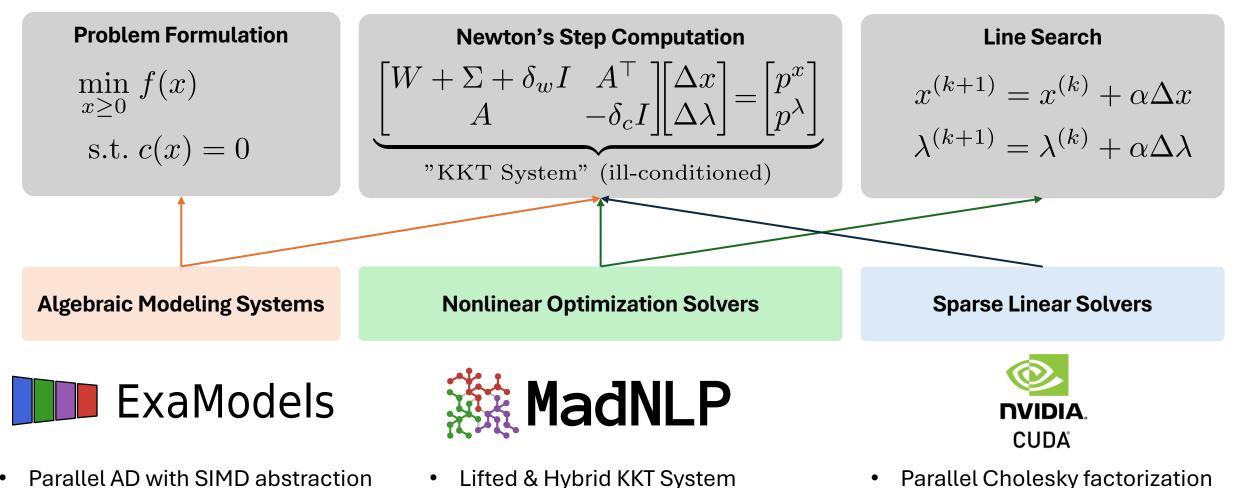




- For the largest case, **ExaModels on GPU** is **100× faster** than the state-of-the-art tools on CPUs
- ExaModels runs on all major GPU architectures and single/multi-threaded CPUs

#### Sparse AD with SIMD abstraction enables efficient derivative computations on GPUs

### **Nonlinear Optimization Framework on GPUs**



**Runs on NVIDIA GPUs** 

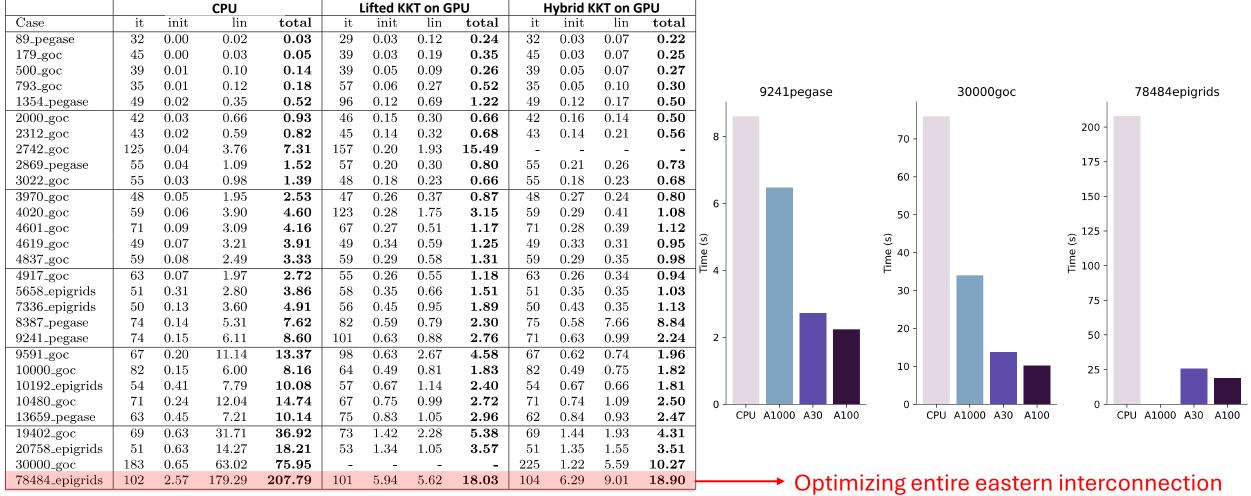
• Runs on GPU architectures

https://github.com/exanauts/ExaModels.jl https://github.com/MadNLP/MadNLP.jl https://docs.nvidia.com/cuda/cudss

Sungho Shin <u>sshin@anl.gov</u>

**Runs on NVIDIA GPUs** 

### **AC Optimal Power Flow**



CUDA

ExaModels + 🤼 MadNLP +

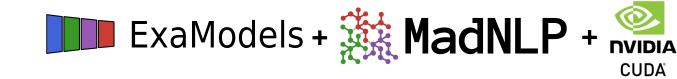
Table 3 OPF benchmark, solved with a tolerance tol=1e-6. (A100 GPU)

• For large-scale cases (> 20k vars), GPU becomes significantly faster than CPU (up to ×10)

#### • Reliable convergence for tol=10<sup>-6</sup>, but still less reliable than CPUs

Pacaud, Shin, Montoison, Schanen, and Anitescu. Approaches to nonlinear programming on GPU architectures. In preparation.

### **Distillation Column**



|             |          | CPU | -         | Lifte    | d KKT o | n GPU     | Hybrid KKT on GPU |    |           |  |  |
|-------------|----------|-----|-----------|----------|---------|-----------|-------------------|----|-----------|--|--|
| #time steps | init (s) | it  | solve (s) | init (s) | it      | solve (s) | init (s)          | it | solve (s) |  |  |
| 100         | 0.1      | 7   | 0.1       | 0.1      | 11      | 0.1       | 0.1               | 7  | 0.0       |  |  |
| 500         | 0.1      | 7   | 0.5       | 0.2      | 12      | 0.1       | 0.2               | 7  | 0.1       |  |  |
| 1,000       | 0.1      | 7   | 1.5       | 0.4      | 12      | 0.2       | 0.4               | 7  | 0.1       |  |  |
| 5,000       | 0.6      | 7   | 8.2       | 2.3      | 13      | 0.5       | 2.3               | 7  | 0.4       |  |  |
| 10,000      | 1.3      | 7   | 18.7      | 5.2      | 13      | 0.9       | 5.3               | 7  | 0.7       |  |  |
| 20,000      | 4.3      | 7   | 38.2      | 10.7     | 14      | 2.1       | 11.3              | 7  | 1.4       |  |  |
| 50,000      | 15.9     | 7   | 98.8      | 30.4     | 14      | 5.5       | 31.2              | 7  | 3.8       |  |  |

- "Symbolic analysis" is often the bottleneck on GPUs, but this can be computed "off-line" thus, online computation performance can be even greater
- The distillation column control problem can be solved more than 20x faster

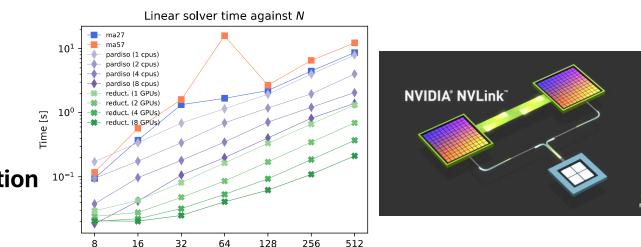
**ExaModels, MadNLP**, and **CUDSS** provide **efficient and reliable** solution framework for large-scale nonlinear optimization problems

### **Remaining Challenges**

Portable sparse Cholesky factorization

|                              |           | CPU (single)          | CPU (multi)  | NVIDIA GPU   | AMD GPU      | Intel GPU |
|------------------------------|-----------|-----------------------|--------------|--------------|--------------|-----------|
|                              | AMPL      | ✓                     | ×            | ×            | ×            | X         |
| Algebraic Modeling Platforms | JuMP      | ✓                     | ×            | ×            | ×            | ×         |
|                              | ExaModels | <b>v</b>              | $\checkmark$ | $\checkmark$ | $\checkmark$ | ✓         |
| NLP Solvers                  | lpopt     | <ul> <li>✓</li> </ul> | ×            | ×            | ×            | X         |
| INLE SOIVEIS                 | MadNLP    | <b>√</b>              | ×            | $\checkmark$ | ×            | ×         |

- Currently, we are relying on a **proprietary** Cholesky solver (CUDSS)
- An open-source, portable Cholesky solver is needed to run on Exascale
- Multi-GPU optimization tools
  - A single GPU is sometimes limited in computation & storage capacity
  - Our recent results suggest that there are significant opportunities in multi-GPU utilization



N scenarios

Pacaud et. al. Parallel interior-point solver for block-structured nonlinear programs on SIMD/GPU architectures, OMS (2024).

# EXAMODELSMOI.JL

2

- Provides an MOI optimizer for JuMP models
  - Can use either ExaModels.IpoptOptimizer or ExaModels.MadNLPOptimizer
    - 1 using ExaModels, JuMP, CUDA, MadNLPGPU
    - 3 model = Model(() -> ExaModels.MadNLPOptimizer(CUDABackend()))
- Searches for repeated algebraic structure via a **bin search**

Doesn't necessary yield the most efficient ExaModel structure



# ACCELERATING NLP PERFORMANCE ON CPUS AND GPUS

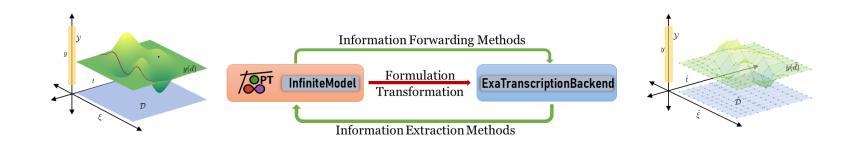
- ExaModels + MadNLP is highly performant for problems with repeated patterns
- Translating InfiniteOpt problems to SIMD is nontrivial
- TranscriptionOpt + ExaModelsMOI has to ignore structure while building the model

| 46 8.9492673e+86 8.27e-84 2.51e+82 -3.8 1.52e+81 - 3.48e-81 2.27e-81f 1                                                                            | iter objective inf_pr inf_du lg(mu)   d   lg(rg) alpha_du alpha_pr ls                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47 8.9489151e+86 9.82e-84 2.11e+82 -3.8 1.22e+81 - 5.52e-81 2.96e-81f 1                                                                            | 58 8.9482184e+86 3.24e-81 3.22e+88 -3.8 1.93e+88 -3.4 1.88e+88 2.65e-81h 1                                                                                 |
| 48 8.9486888e+86 7.66e-84 1.54e+82 -3.8 9.81e+88 - 3.81e-81 2.86e-81h 1                                                                            | 51 8.9481836e+86 1.55e-01 1.33e+88 -3.8 4.37e+88 -3.9 1.00e+88 7.27e-81h 1                                                                                 |
| 49 8.9484865e+86 9.46e-84 1.82e+82 -3.8 6.78e+88 - 7.38e-81 3.69e-81h 1                                                                            | 52 8.9481716e+86 1.95e-81 8.32e-84 -3.8 9.45e+88 -4.4 1.88e+88 1.88e+88h 1                                                                                 |
| iter objective inf_pr inf_du lg(mu)   d   lg(rg) alpha_du alpha_pr ls                                                                              | 53 8.9481718e+86 2.32e-81 2.13e-85 -3.8 1.27e+81 -4.9 1.88e+88 1.88e+88h 1                                                                                 |
| 58 8.9483344e+86 1.15e-83 5.46e+81 -3.8 4.62e+88 - 7.24e-81 4.63e-81h 1                                                                            | 54 8.9481715e+86 1.17e-81 9.73e-86 -3.8 9.21e+88 -5.3 1.88e+88 1.88e+88h 1                                                                                 |
| 51 8.9482821e+86 8.39e-84 1.12e+81 -3.8 2.67e+88 - 8.29e-81 7.97e-81h 1                                                                            | 55 8.9481719e+86 1.21e-82 2.51e-86 -3.8 3.88e+88 -5.8 1.88e+88 1.88e+88h 1                                                                                 |
| 52 8.9481722e+86 2.24e-85 2.73e-84 -3.8 6.22e-81 - 1.80e+88 1.80e+88h 1                                                                            | 56 8.9481721e+86 1.77e-84 3.26e-87 -3.8 4.58e-81 -6.3 1.88e+88 1.88e+88h 1                                                                                 |
| 53 8.9481723e+86 1.98e-86 3.89e-85 -3.8 1.35e-82 - 1.88e+88 1.88e+88h 1                                                                            | 57 8.9481213e+86 4.88e-83 1.95e-81 -5.7 2.14e+88 -6.8 5.36e-81 4.89e-81h 1                                                                                 |
| 54 8.9481213e+86 6.65e-85 5.97e+88 -5.7 2.15e+88 - 5.49e-81 4.18e-81f 1                                                                            | 58 8.9481835e+86 4.93e-83 1.84e+88 -5.7 1.43e+88 -7.2 6.18e-81 2.47e-81h 1                                                                                 |
| 55 8.9481835e+86 6.49e-85 1.13e+81 -5.7 1.41e+88 - 6.87e-81 2.47e-81h 1                                                                            | 59 8.9488658e+86 3.69e-82 5.72e-81 -5.7 1.16e+88 -7.7 5.98e-81 6.94e-81h 1                                                                                 |
| 56 8.9488659e+86 5.15e-84 2.85e+88 -5.7 1.14e+88 - 5.97e-81 6.94e-81h 1                                                                            | iter objective inf_pr inf_du lg(mu)   d   lg(rg) alpha_du alpha_pr ls                                                                                      |
| 57 8.9488591e+86 4.22e-84 2.63e+88 -5.7 4.38e-81 - 2.98e-81 4.34e-81h 1                                                                            | 68 8.9488598e+86 2.88e-82 6.98e-81 -5.7 4.36e-81 -8.2 2.98e-81 4.34e-81h 1                                                                                 |
| 58 8.9488537e+86 2.35e-84 5.51e+88 -5.7 2.72e-81 - 1.88e+88 6.28e-81h 1                                                                            | 61 8.9488536e+86 1.92e-82 5.55e+88 -5.7 2.75e-81 -8.7 1.88e+88 6.18e-81h 1                                                                                 |
| 59 8.9488584e+86 4.68e-85 2.35e-82 -5.7 1.46e-81 - 1.88e+88 9.96e-81h 1                                                                            | 62 8.9480501e+86 8.70e-03 3.87e-82 -5.7 1.48e-01 -9.1 1.00e+80 9.94e-01h 1                                                                                 |
| iter objective inf_pr inf_du lg(mu)   d   lg(rg) alpha_du alpha_pr ls                                                                              | 63 8.9488581e+86 2.71e-05 5.92e-07 -5.7 2.51e-02 -9.6 1.00e+00 1.00e+00 1                                                                                  |
| 68 8.9488584e+86 2.38e-85 6.98e-81 -5.7 2.58e-82 - 1.88e+88 5.88e-81h 2                                                                            | 64 8.9488581e+86 2.84e-87 3.82e-88 -5.7 3.62e-83 -10.1 1.88e+88 1.88e+88h 1                                                                                |
| 61 8.9488584e+86 2.21e-87 1.51e-87 -5.7 1.13e-82 - 1.88e+88 1.88e+88h 1                                                                            | 65 8.9488489e+86 7.29e-83 2.74e-81 -8.6 1.45e-81 -18.6 8.53e-81 7.18e-81h 1                                                                                |
| 62 8.9488494e+86 4.18e-86 3.89e-81 -8.6 6.29e-82 - 8.95e-81 7.84e-81h 1                                                                            | 66 8.9488475e+86 7.78e-84 2.53e-81 -8.6 2.95e-82 -11.1 6.79e-81 8.95e-81h 1<br>67 8.9488466e+86 4.87e-86 1.25e-81 -8.6 7.66e-83 -11.5 7.47e-81 1.88e+88h 1 |
| In iteration 62, 1 Slack too small, adjusting variable bound<br>63 8.9488498e+86 2.85e-86 1.35e-81 -8.6 3.85e-82 - 9.88e-81 9.81e-81h 1            | 6/ 8.9488466e+86 8.68e-87 2.86e-82 -8.6 2.38e-83 -6.6 8.35e-81 1.88e+88h 1                                                                                 |
|                                                                                                                                                    |                                                                                                                                                            |
|                                                                                                                                                    | 69 8.9488466e+86 2.36e-86 9.53e-89 -8.6 1.62e-83 -7.1 1.88e+88 1.88e+88h 1<br>iter objective inf or inf du lo(mu)   d   lo(ro) alpha du alpha or ls        |
| 65 8.9488489e+86 3.52e-88 3.12e-88 -8.6 1.98e-83 - 1.88e+88 1.88e+89 1.<br>66 8.9488489e+86 2.58e-89 6.11e-89 -8.6 3.22e-84 - 1.88e+88 1.88e+88 1. | iter objective inf_pr inf_du lg(mu)   d   lg(rg) alpha_du alpha_pr ls<br>78 8.9488466e+86 3.69e-87 2.24e-89 -8.6 6.45e-84 -6.6 1.08e+88 1.08e+88h 1        |
| 66 8.94884698+86 2.588-89 6.118-89 -8.6 3.228-84 - 1.888+88 1.888+88 1                                                                             | 78 8.9488466e+86 8.89e-87 2.248-89 -8.6 6.45e-84 -6.6 1.88e+88 1.88e+88 1<br>71 8.9488466e+86 8.89e-18 2.86e-18 -8.6 4.23e-85 -5.3 1.88e+88 1.88e+88h 1    |
| Number of Iterations: 66                                                                                                                           |                                                                                                                                                            |
|                                                                                                                                                    | Number of Iterations: 71                                                                                                                                   |
| (scaled) (unscaled)                                                                                                                                |                                                                                                                                                            |
| Objective: 6.8689868522388895e+84 8.9488489176823249e+86                                                                                           | (scaled) (unscaled)                                                                                                                                        |
| Dual infeasibility: 6.1111782827239337e-89 7.9689641939457634e-87                                                                                  | Objective 6.8689050407876275e+84 8.9480465578552410e+06                                                                                                    |
| Constraint violation: 2.5823698668746874e-89 2.5823698668746874e-89                                                                                | Dual infeasibility: 2.8585968359393939e-18 2.6817182673681384e-88                                                                                          |
| Variable bound violation: 1.9973768772274525e-87 1.9973768772274525e-87                                                                            | Constraint violation: 8.8916429112676269e-18 8.8916429112676269e-18                                                                                        |
| Complementarity: 4.5931745136391954e-89 5.9834775924759131e-87                                                                                     | Complementarity: 1.9536168379976883e-11 2.5449539861788477e-89                                                                                             |
| Dverall NLP error: 6.1111782827239337e-89 7.9689641939457634e-87                                                                                   | Overall NLP error: 2.5449539861708477e-89 2.5449539861708477e-89                                                                                           |
|                                                                                                                                                    | Number of objective function evaluations = 76                                                                                                              |
| Number of objective function evaluations = 79                                                                                                      | Number of objective radicities = 70                                                                                                                        |
| Number of objective radient evaluations = 67                                                                                                       | Number of constraint evaluations = 76                                                                                                                      |
| Number of equality constraint evaluations = 79                                                                                                     | Number of constraint Jacobian evaluations = 72                                                                                                             |
| Number of inequality constraint evaluations = 79                                                                                                   | Number of Lagrangian Hessian evaluations = 72                                                                                                              |
| Number of equality constraint Jacobian evaluations = 67                                                                                            | Total wall-clock secs in solver (w/o fun, eval./lin, alg.) = 2.565                                                                                         |
| Number of inequality constraint Jacobian evaluations = 67                                                                                          | Total wall-clock secs in Solver (w/o fun. eval./lin. alg.) = 2.565                                                                                         |
| Number of Lagrangian Hessian evaluations = 66                                                                                                      | Total wall-clock secs in NLP function evaluations = 8.127                                                                                                  |
| Total seconds in IPOPT = 18.372                                                                                                                    | Total wall-clock secs in MLP renetion evaluations = 0.127                                                                                                  |
|                                                                                                                                                    |                                                                                                                                                            |
| EXIT: Optimal Solution Found.                                                                                                                      | EXIT: Optimal Solution Found (tol = 1.0e-08).                                                                                                              |
| "Execution stats: first-order stationary"                                                                                                          | "Execution stats: Optimal Solution Found (tol = 1.0e-08)."                                                                                                 |
|                                                                                                                                                    |                                                                                                                                                            |
| julia>                                                                                                                                             | julia>                                                                                                                                                     |
|                                                                                                                                                    |                                                                                                                                                            |



### OUTLINE

InfiniteOpt



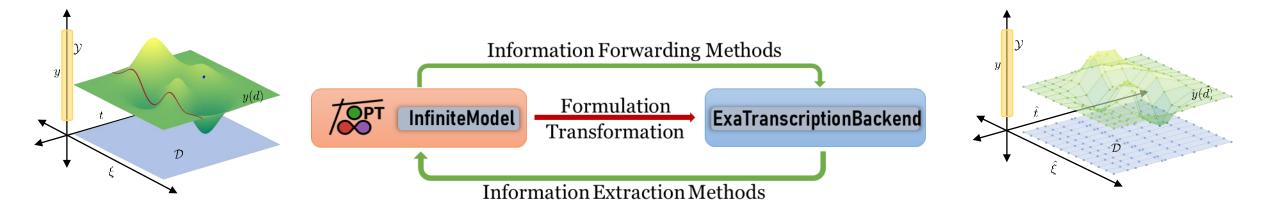
ExaModels

InfiniteExaModels



### **INFINITEEXAMODELS.JL**

- Bridges the gap between This infiniteOpt & ExaModels
- Automates transcription via established transformation interface
- Leverages repeated structure to **drastically reduce model creation time** 
  - More efficient than manual transcription directly given to ExaModels





# **IMPLEMENTATION DETAILS**

- Supports the use of **JSO NLP solvers** (e.g., Ipopt, MadNLP, KNITRO)
- Defined via an ExaTranscriptionBackend
  - 1 using InfiniteOpt, InfiniteExaModels, NLPModelsIpopt
  - 2 model = InfiniteModel(ExaTranscriptionBackend(IpoptSolver))
- Rapidly transcribes infinite model into **efficient ExaModels**
- Model build time is nearly independent of the discretization size



### **BENCHMARK PROBLEMS**

- Compare performance with JuMP, AMPL, ExaModels, and InfiniteExaModels
- Run on CPU with Ipopt and GPU with MadNLP

#### **2-Stage Stochastic Program**

- Stochastic optimal power flow
- 1,000 to 16,000 random scenarios

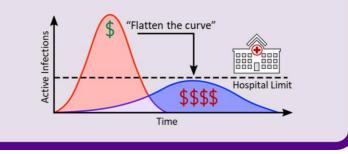
#### **Optimal Control**

- Model predictive control of quadcopter
- Track trajectory setpoint and vary grid size



#### **Stochastic Optimal Control**

- Control isolation policy to combat disease
- Uncertain transmission rate







# NUMERICAL RESULTS (CPU W/ IPOPT)

- AD is 5 20 times faster
- Model build time is 1 2 orders-of-magnitude faster

|                      | Stochastic 2-Stage |      | <b>Optimal Control</b> |      |       |     | Stochastic Control |      |       |      |       |      |
|----------------------|--------------------|------|------------------------|------|-------|-----|--------------------|------|-------|------|-------|------|
| Approach             | Build              | AD   | Solve                  | Tot. | Build | AD  | Solve              | Tot. | Build | AD   | Solve | Tot. |
| JuMP.jl              | 87.1               | 21.4 | 63.7                   | 151  | 143   | 6.3 | 28.6               | 172  | 10.9  | 60.7 | 386   | 397  |
|                      | 99.3               |      |                        |      |       | 5   | 26.4               | 179  | 10.6  | 23.4 | 364   | 375  |
| ExaModelsMOI.jl      | 86.6               | 3.05 | 56.3                   | 143  | 139   | 1.1 | 23.1               | 162  | 8.63  | 3.45 | 368   | 376  |
| InfiniteExaModels.jl | 1.94               | 2.03 | 43                     | 45   | 9.34  | 1   | 22.6               | 31.9 | 0.12  | 3.01 | 369   | 369  |

1 using InfiniteOpt, InfiniteExaModels, NLPModelsIpopt

2 model = InfiniteModel(ExaTranscriptionBackend(IpoptSolver))



# NUMERICAL RESULTS (GPU W/ MADNLP)

- All AD and solve times are up to ~20 faster on GPU
- InfiniteExaModels.jl builds models **orders-of-magnitude faster** than ExaModels

|                                        | Stochastic 2-Stage |      |       |      | Op    | otima | l Contr | ol   | Stochastic Control |      |       |      |
|----------------------------------------|--------------------|------|-------|------|-------|-------|---------|------|--------------------|------|-------|------|
| Approach                               | Build              | AD   | Solve | Tot. | Build | AD    | Solve   | Tot. | Build              | AD   | Solve | Tot. |
| ExaModelsMOI.jl                        | 83                 | 0.09 | 3.15  | 86.1 | 133   | 0.1   | 6.55    | 140  | 8.21               | 0.51 | 20.4  | 28.6 |
| InfiniteExaModels.jl                   | 1.8                | 0.14 | 3.03  | 4.82 | 8.63  | 0.1   | 6.44    | 15.1 | 0.06               | 0.74 | 21    | 21   |
| (151 on CPU) (172 on CPU) (397 on CPU) |                    |      |       |      |       |       |         |      |                    |      |       |      |

- 1 using InfiniteOpt, InfiniteExaModels, MadNLPGPU, CUDA
- 2 transform\_backend = ExaTranscriptionBackend(MadNLPSolver, backend = CUDABackend())
- 3 model = InfiniteModel(transform\_backend)

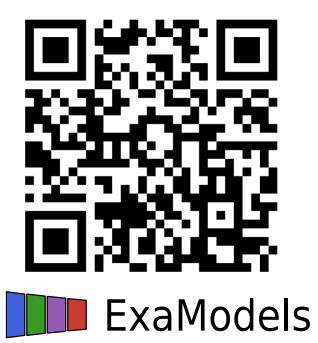


# **TRY IT OUT!**





### InfiniteExaModels







### InfiniteExaModels

# UNIVERSITY OF WATERLOO



FACULTY OF ENGINEERING

YOU+WATERLOO

Our greatest impact happens together.

