
1/12

LibHSL: the ultimate collection for large-scale
scientific computation

Alexis Montoison, Dominique Orban,
Andrew Lister, Jaroslav Fowkes

July 20th, 2024

JuMP-dev – Montréal

2/12

Introduction

The HSL Mathematical Software Library 1 is a key resource for numerical
computations, offering robust and efficient routines for sparse linear systems and
eigenvalue problems.

[
a11 a12 a13
a21 a22 a23
a31 a32 a33

] [
x1
x2
x3

]
=

[
b1
b2
b3

] [
a11 a12 a13
a21 a22 a23
a31 a32 a33

] [
y1
y2
y3

]
= λ

[
y1
y2
y3

]

These routines are essential tools to address complex problems, including those arising
in continuous optimization and partial differential equations.

1. Harwell Subroutine Library – https://www.hsl.rl.ac.uk

https://www.hsl.rl.ac.uk

3/12

What is libHSL ?

LibHSL is a collection of more than 160 HSL packages.

It aims to facilitate the use of HSL in Julia as well as Fortran, C, C++, and
Python such as Ipopt, GALAHAD and CasADi.

LibHSL provides the source code of the included HSL packages, pre-built
binaries with shared libraries, and a Julia package named HSL_jll.jl.

4/12

How to use HSL_jll.jl in the Julia ecosystem

To install the package HSL_jll.jl, you only need the following commands in the Julia
REPL :

� �
julia>]
pkg> dev path_to_hsl_jll� �

HSL_jll.jl is a registered Julia package and can be added as a dependency of any
Julia package.

5/12

How to use HSL_jll.jl in Julia packages

• A version of HSL_jll.jl based on a dummy LibHSL was precompiled with Yggdrasil 1.� �
using HSL_jll

function LIBHSL_isfunctional()
@ccall libhsl.LIBHSL_isfunctional()::Bool

end

bool = LIBHSL_isfunctional()� �
• In the dummy version, LIBHSL_isfunctional returns the boolean false. In the
full-featured version provided by LibHSL, this C function returns the boolean true.

� �
if LIBHSL_isfunctional()

... # solve a symmetric linear system with HSL_MA57
else

... # solve a symmetric linear system with SuiteSparse
end� �
1. https://github.com/JuliaPackaging/Yggdrasil

https://github.com/JuliaPackaging/Yggdrasil

6/12

HSL.jl

The package HSL.jl 1 provides wrappers for all HSL packages with a C interface
or those written in Fortran 77.

Wrappers are Julia functions that call C and Fortran routines with the macro
@ccall.

The combination of HSL.jl and HSL_jll.jl enables users to abstract away from
low-level C and Fortran languages, allowing them to utilize most HSL packages
as if they were native Julia packages.

1. https://github.com/JuliaSmoothOptimizers/HSL.jl

https://github.com/JuliaSmoothOptimizers/HSL.jl

7/12

How to use HSL_jll.jl in Ipopt.jl

For the Julia interface Ipopt.jl 1, HSL_jll.jl must be used directly.� �
using JuMP, Ipopt, HSL_jll

An optimization problem
model = Model(Ipopt.Optimizer)
@variable(model, x)
@objective(model, Min, (x - 2)ˆ2)

Use the linear solver MA57
set_attribute(model, "linear_solver", "ma57")
optimize!(model)

Use the linear solver MA97
set_attribute(model, "linear_solver", "ma97")
optimize!(model)� �
The available HSL linear solvers are "ma27", "ma57", "ma77", "ma86" and "ma97".

1. https://github.com/jump-dev/Ipopt.jl

https://github.com/jump-dev/Ipopt.jl
https://github.com/jump-dev/Ipopt.jl

8/12

BLAS and LAPACK demuxing
HSL_jll.jl is compiled with libblastrampoline 1 (LBT) and offers the possibility to
switch between BLAS and LAPACK backends in Julia.

� �
Load OpenBLAS
using OpenBLAS32_jll
BLAS.lbt_forward(libopenblas)

Load MKL
using MKL

Load AppleAccelerate
using AppleAccelerate

BLAS and LAPACK backends loaded
BLAS.lbt_get_config()� �
1. https://github.com/JuliaLinearAlgebra/libblastrampoline

https://github.com/JuliaLinearAlgebra/libblastrampoline

9/12

HSL vs MUMPS

� �
This is Ipopt version 3.14.14, running with linear solver X.

Number of nonzeros in equality constraint Jacobian...: 3194444
Number of nonzeros in inequality constraint Jacobian.: 756090
Number of nonzeros in Lagrangian Hessian.............: 5708220

Total number of variables............................: 674143
variables with only lower bounds: 0

variables with lower and upper bounds: 595665
variables with only upper bounds: 0

Total number of equality constraints.................: 661017
Total number of inequality constraints...............: 378045

inequality constraints with only lower bounds: 0
inequality constraints with lower and upper bounds: 126015

inequality constraints with only upper bounds: 252030� �
Linear solver Elapsed time (in seconds)

MUMPS 1445.870
MA27 302.216
MA57 319.198

1. https://github.com/JuliaLinearAlgebra/libblastrampoline

https://github.com/JuliaLinearAlgebra/libblastrampoline

10/12

Future improvements

Support for 64-bit integers : A planned enhancement is to add support for 64-bit
integers in HSL packages. This upgrade would enable the solution of even
larger-scale problems.

GPU-accelerated linear solvers : We anticipate integrating GPU support for
BLAS libraries, such as CUBLAS for NVIDIA GPUs, rocBLAS for AMD GPUs,
or oneMKL for Intel GPUs. This integration could significantly enhance
performance in linear solvers.

11/12

Conclusion

⋆ LibHSL provides everything that you could need in HSL packages ;

⋆ HSL_jll.jl is a pre-built version of LibHSL to be readily used in the Julia
ecosystem ;

⋆ HSL_jll.jl is precompiled for various operating systems (Windows, Mac, Linux,
FreeBSD) and architectures (x64, arm64, ppc64) ;

⋆ The combination of HSL.jl and HSL_jll.jl allows one to abstract away from the
low-level C and Fortran languages ;

⋆ LibHSL is free if you can request an academic licence!

12/12

Downloading libHSL

https://licences.stfc.ac.uk/product/libhsl

https://licences.stfc.ac.uk/product/libhsl

