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Outline

• Background, SINTEF, Julia

• How to work with large scale, complex optimization models

• Illustrative examples showing two different approaches

• Learning, experiences and how to progress
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Optimization modeling @SINTEF

• Developing optimization models for industrial use and economic analysis

• Historically the primary tool has been FICO Xpress using the Mosel modelling 
language

• Other modeling tools: GAMS, AMPL, Pyomo

• Several models in daily operation across several industries (oil and gas, aluminium)

• Economic models for long term analysis (energy, infrastructure, regional, national and 
global focus) 
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Why Julia and JuMP?

• Specialized algebraic modelling languages typically lack support for:
‒ Easy modularization and code reuse

‒ Support for multiple solvers

‒ Ecosystem of surrounding packages for file IO, database access, plotting

• Commercial modeling tools are costly, and some are tied to a specific solver

• Research funding (EU and Research Council of Norway) tending towards more openly 
available models and software

• Julia and JuMP gradually introduced since 2020
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Open packages released by SINTEF

• SparseVariables: https://github.com/sintefore/SparseVariables.jl

• UnitJuMP: https://github.com/trulsf/UnitJuMP.jl

• TimeStruct: https://github.com/sintefore/TimeStruct.jl

• EnergyModelsX: https://github.com/orgs/EnergyModelsX

• PiecewiseAffineApprox: https://github.com/sintefore/PiecewiseAffineApprox.jl

For a short introduction to the packages see presentations at JuMP-Dev 2022, 2023 and 
2024 (talks by Lars Hellemo and Julian Straus). 
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How to handle complex optimization models

• Clear separation between input data and optimization modelling

• Multiple dispatch to control formulation and configuration

• Separate module(s) for the optimization model and associated data structures

• Automatic test routines

• Documentation

• Recommended reading
‒ https://jump.dev/JuMP.jl/stable/tutorials/getting_started/design_patterns_for_larger_models/
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Modeling approaches 

• Single script – monolithic 

• Julia supports more modular approaches, but the model is still "global" by nature

• What is the API of an optimization model?

• How can a user easily extend model functionality?

• How can we combine multiple models?
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Example 1: logistics of crushed stone and 
excavated masses
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Approach using JuMP 

• UnitJuMP to ensure correct and flexible use of physical units

• TimeStruct for general time structures

• SparseVariables to allow dynamic generation of variables with 
sparse structure

• MultiObjectiveAlgorithms to balance economic and 
environmental aspects

• Separate packages for the optimization modeling and for setting 
up an instance based on input data
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Model variables

• Separate structure to collect all model 
variables

• Easier overview of available variables 
(including code completion)

• Using SparseVariables to allow dynamic 
variable creation

• Using UnitJuMP to include physical units
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Data structures

• Each node in the network is responsible 
for creating its own variables, constraints 
and objective contributions

• Dispatching on node types 
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Industrial deployment

Technology for a better society

Excel Optimization
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Configuration
• Julia model distributed as a 

self-contained executable 
using PackageCompiler

• 382 MB zipped file 
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Experiences and learnings

• The use of physical units can be a bit cumbersome, but can catch errors in modeling
at an early stage 

• Custom structures for holding model variables can be beneficial

• Multi objective for "free" ☺

• Deployment at customer can be a considerable challenge (but not necessarily related 
to Julia/JuMP)
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Example 2: Locating hydrogen infrastructure in 
the Lofoten Islands
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Approach using JuMP

• TimeStruct for flexible time structures

• Storages for general modeling of storage inventory (in combination with TimeStruct)

• PiecewiseAffineApprox to add convex piecewise linear approximations of a set of 
points to optimization models

• EnergyModelsInvestement for general modeling of investment decisions
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Submodels as separate packages with well-
defined APIs

• Inspired by the approach of ModelingToolkit/Modelica and Plasmo

• Create a standard library of components that can be combined through connectors

• Components can be added to an optimization model producing the required 
submodel
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Storages

• Storage as a high-level object that can be directly 
added to a JuMP model

• Builds upon TimeStruct

• Exposes a small interface:

• Tracking of storage levels is internal to the 
module 
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Usage example
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Generated model
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Experiences and learnings
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• Separate modules for different components and aspects allow for easy reuse

• Hiding internal model implementation reduces complexity

• Composability in Julia is excellent

• Still experimenting, more tutorials and best-practice are welcome



Summary and wishlist

• Julia and JuMP has been well received among all involved colleagues

• JuMP documentation and tutorials are very good 

• JuMP has been robust and stable

• Much to gain from working with an open-source approach (code and knowledge 
sharing)

• Wishlist
‒ Use of physical units as an integral part of JuMP

‒ Model debugger (IIS detection, relaxation, activating/deactivating constraints) 

‒ Efficient handling of large scale and sparse models and associated solution information
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