
Truls Flatberg

Applied optimization 
with JuMP at SINTEF

Technology for a better society



Outline

• Background, SINTEF, Julia

• How to work with large scale, complex optimization models

• Illustrative examples showing two different approaches

• Learning, experiences and how to progress

Technology for a better society



CUSTOMER SATISFACTI ON

4,6 / 5
INTERNAT IONAL

57 million EUR
PUBLI CATIONS (INCL. DI SSEMINAT ION)

6200
NATI ONALITI ES

80

367 million
EUR turnover

6400
projects

3300
customers

2200
employees 

ONE OF EUROPE’S LARGEST INDEPENDENT 
RESEARCH ORGANISATIONS



Optimization modeling @SINTEF

• Developing optimization models for industrial use and economic analysis

• Historically the primary tool has been FICO Xpress using the Mosel modelling 
language

• Other modeling tools: GAMS, AMPL, Pyomo

• Several models in daily operation across several industries (oil and gas, aluminium)

• Economic models for long term analysis (energy, infrastructure, regional, national and 
global focus) 

Technology for a better society



Why Julia and JuMP?

• Specialized algebraic modelling languages typically lack support for:
‒ Easy modularization and code reuse

‒ Support for multiple solvers

‒ Ecosystem of surrounding packages for file IO, database access, plotting

• Commercial modeling tools are costly, and some are tied to a specific solver

• Research funding (EU and Research Council of Norway) tending towards more openly 
available models and software

• Julia and JuMP gradually introduced since 2020

Technology for a better society



Open packages released by SINTEF

• SparseVariables: https://github.com/sintefore/SparseVariables.jl

• UnitJuMP: https://github.com/trulsf/UnitJuMP.jl

• TimeStruct: https://github.com/sintefore/TimeStruct.jl

• EnergyModelsX: https://github.com/orgs/EnergyModelsX

• PiecewiseAffineApprox: https://github.com/sintefore/PiecewiseAffineApprox.jl

For a short introduction to the packages see presentations at JuMP-Dev 2022, 2023 and 
2024 (talks by Lars Hellemo and Julian Straus). 

Technology for a better society

https://github.com/sintefore/SparseVariables.jl
https://github.com/trulsf/UnitJuMP.jl
https://github.com/sintefore/TimeStruct.jl
https://github.com/orgs/EnergyModelsX
https://github.com/sintefore/PiecewiseAffineApprox.jl


How to handle complex optimization models

• Clear separation between input data and optimization modelling

• Multiple dispatch to control formulation and configuration

• Separate module(s) for the optimization model and associated data structures

• Automatic test routines

• Documentation

• Recommended reading
‒ https://jump.dev/JuMP.jl/stable/tutorials/getting_started/design_patterns_for_larger_models/

Technology for a better society

https://jump.dev/JuMP.jl/stable/tutorials/getting_started/design_patterns_for_larger_models/


Modeling approaches 

• Single script – monolithic 

• Julia supports more modular approaches, but the model is still "global" by nature

• What is the API of an optimization model?

• How can a user easily extend model functionality?

• How can we combine multiple models?

Technology for a better society



Example 1: logistics of crushed stone and 
excavated masses

Technology for a better society



Approach using JuMP 

• UnitJuMP to ensure correct and flexible use of physical units

• TimeStruct for general time structures

• SparseVariables to allow dynamic generation of variables with 
sparse structure

• MultiObjectiveAlgorithms to balance economic and 
environmental aspects

• Separate packages for the optimization modeling and for setting 
up an instance based on input data

Technology for a better society



Technology for a better society

0/250
Spreng-

stein
Knuser (K1)

0/250

500 Knuser (K2)400 Sikt (S1)400

0/32

22/125

Knuser (K3)

Sikt (S2)

22/125

0/32 0/90Miks 0/90

160

Sikt (S4)8/16

4/8

Knuser (K4)

32/63
(22/63)

32/63
(22/63)

Sikt (S3)

60

20

11/16

40

0/4

8/16

4/16 Miks

60

4/16 0/4

40
20

11/16

4/8

Maskinkult

Maskinkult

Ballastpukk

Grøftepukk

Pukk

Pukk

Stensand

Pukk

16/3260 16/32

Pukk

Kan også gi 0/16 eller 0/63

80-100

80/120/240

100



Model variables

• Separate structure to collect all model 
variables

• Easier overview of available variables 
(including code completion)

• Using SparseVariables to allow dynamic 
variable creation

• Using UnitJuMP to include physical units

Technology for a better society



Technology for a better society

UnitJuMP

SparseVariables



Data structures

• Each node in the network is responsible 
for creating its own variables, constraints 
and objective contributions

• Dispatching on node types 

Technology for a better society



Industrial deployment

Technology for a better society

Excel Optimization

.csv

.csv

Solution(s)

Data

.json

Configuration
• Julia model distributed as a 

self-contained executable 
using PackageCompiler

• 382 MB zipped file 



Technology for a better society



Experiences and learnings

• The use of physical units can be a bit cumbersome, but can catch errors in modeling
at an early stage 

• Custom structures for holding model variables can be beneficial

• Multi objective for "free" ☺

• Deployment at customer can be a considerable challenge (but not necessarily related 
to Julia/JuMP)

Technology for a better society



Example 2: Locating hydrogen infrastructure in 
the Lofoten Islands

Technology for a better societyPhoto by Holly Rowland/CC-BY 2.0



Approach using JuMP

• TimeStruct for flexible time structures

• Storages for general modeling of storage inventory (in combination with TimeStruct)

• PiecewiseAffineApprox to add convex piecewise linear approximations of a set of 
points to optimization models

• EnergyModelsInvestement for general modeling of investment decisions

Technology for a better society



Submodels as separate packages with well-
defined APIs

• Inspired by the approach of ModelingToolkit/Modelica and Plasmo

• Create a standard library of components that can be combined through connectors

• Components can be added to an optimization model producing the required 
submodel

Technology for a better society



Storages

• Storage as a high-level object that can be directly 
added to a JuMP model

• Builds upon TimeStruct

• Exposes a small interface:

• Tracking of storage levels is internal to the 
module 

Technology for a better society

Inflow

Outflow

Capacity



Usage example

Technology for a better society



Generated model

Technology for a better society



Experiences and learnings

Technology for a better society

• Separate modules for different components and aspects allow for easy reuse

• Hiding internal model implementation reduces complexity

• Composability in Julia is excellent

• Still experimenting, more tutorials and best-practice are welcome



Summary and wishlist

• Julia and JuMP has been well received among all involved colleagues

• JuMP documentation and tutorials are very good 

• JuMP has been robust and stable

• Much to gain from working with an open-source approach (code and knowledge 
sharing)

• Wishlist
‒ Use of physical units as an integral part of JuMP

‒ Model debugger (IIS detection, relaxation, activating/deactivating constraints) 

‒ Efficient handling of large scale and sparse models and associated solution information

Technology for a better society



Technology for a better society


	Slide 1: Applied optimization with JuMP at SINTEF
	Slide 2: Outline
	Slide 3
	Slide 4: Optimization modeling @SINTEF
	Slide 5: Why Julia and JuMP?
	Slide 6: Open packages released by SINTEF
	Slide 7: How to handle complex optimization models
	Slide 8: Modeling approaches 
	Slide 9: Example 1: logistics of crushed stone and excavated masses
	Slide 10: Approach using JuMP 
	Slide 11
	Slide 12: Model variables
	Slide 13
	Slide 14: Data structures
	Slide 15: Industrial deployment
	Slide 16
	Slide 17: Experiences and learnings
	Slide 18: Example 2: Locating hydrogen infrastructure in the Lofoten Islands
	Slide 19: Approach using JuMP
	Slide 20: Submodels as separate packages with well-defined APIs
	Slide 21: Storages
	Slide 22: Usage example
	Slide 23: Generated model
	Slide 24: Experiences and learnings
	Slide 25: Summary and wishlist
	Slide 26

